

Appl. Radiat. Isot. Vol. 37, No. 5, pp. 445–447, 1986 Int. J. Radiat. Appl. Instrum. Part A Pergamon Journals Ltd 1986. Printed in Great Britain. 0883-2889/86 \$3.00 + 0.00

A Simple Method for the Separation of ¹¹¹In from Silver by Thermochromatography

A. F. NOVGORODOV,¹ G. J. BEYER,² A. SELINZKI,¹ A. KOLACHKOVSKI,¹ F. RÖSCH¹ and K. SCHOMÄCKER²

¹Joint Institute for Nuclear Research Dubna, Laboratory for Nuclear Problems, Moscow, HPO-Box 79, U.S.S.R. and ²Academy of Sciences of G.D.R., Central Institute for Nuclear Research, Rossendorf, 8051 Dresden, PF 19, G.D.R.

(Received 12 October 1985)

A dry thermochromatographic process for the quantitative separation of ¹¹¹In from α -particles bombarded with silver targets at reduced pressure is proposed. The separation is performed in a quartz apparatus using gas phases containing different mixtures of HCl- and steam.

More than 98% of the ¹¹¹In can be released from a 5.7 g silver target within 0.5 h thereby losing 0.6% of the silver. The ¹¹¹In adsorbed on a quartz surface can easily be dissolved by a 0.05 M HCl solution.

1. Introduction

Indium-111 is an important radionuclide for nuclear medicine. It is usually produced by irradiation of cadmium with protons or deuterons, or by irradiation of silver targets with α -particles or ³H-ions. In the latter case impurities of the undesirable ^{114m}In are completely excluded, but the yield of ¹¹¹In from the nuclear reactions is lower.

For the separation of the ¹¹¹In from the target material coprecipitation with hydroxide⁽¹⁾ followed by isopropyl ether extraction,⁽²⁾ anion exchange methods⁽³⁾ and extraction methods^(4,5) have been used. A disadvantage of all these methods is their multistep form.

Westgard *et al.*,⁽⁶⁾ Rudstam *et al.*,⁽⁷⁾ and Eichler *et al.*,^(8,9) have investigated the thermochromatographic behaviour of metal chlorides. It was shown that the adsorption temperature (T_a) of traces of indium chlorides on a quartz surface and the condensation temperature of silver chloride are significantly different. This idea was used by Shevelev *et al.*⁽¹⁰⁾ for separating ¹¹¹In from molten AgCl.

We propose here a dry thermochromatographic process for the separation of ¹¹¹In from irradiated silver at reduced pressure and in gas phases containing different mixtures from HCl and steam.

Fig. 1. Dependence of the ¹¹¹In-extraction and of silver evaporation on time.

2. Experimental

The target (silver, 2 mm thick) was bombarded by α -particles (27 MeV, 100 μ Ah) in the external beam of the Rossendorf U-120 cyclotron. Irradiated silver samples (0.1-6 g) were inserted into a special quartz furnace (Fig. 1).

After evacuation to an initial pressure of 2.6×10^{-3} Pa the gas mixtures for the chlorination were supplied via the needle valve. The gas mixtures were generated using HCl-solutions of different concentrations (7.2 M, 9.0 M, 10.3 M) (1) to obtain different gas compositions according to the ratios of the partial pressures pHCl/pH₂O.

The experiments were performed at total pressures ranging from 0.3 to 13.3 Pa within 15–120 min. The sample temperature was kept constant at (1310 ± 20) K.

The ¹¹¹In-release from the irradiated silver as well as the indium distribution along the thermochromatographic column were measured by means of a high resolution Ge(Li)-spectrometer.

3. Results and Discussion

Radioactive indium can be separated from silver quantitatively under reduced pressure and defined chlorination conditions (Table 1). More than 98% of the ¹¹¹In was released from a 5.7 g silver target within 0.5 h (Fig. 1), during this time only 0.6% of the silver was lost. The ¹¹¹In was adsorbed on a quartz surface and could be easily dissolved in a 0.05 M HCl solution.

The thermochromatogram of ¹¹¹In (Fig. 2) demonstrates two peaks at the temperatures $T_a = (385 \pm 10)$ K and $T_a = (475 \pm 10)$ K. These peaks do not coincide with the visible precipitation zone of AgCl. A third small ¹¹¹In-peak was found at $T_a = (655 \pm 20)$ K which always appears in experiments shorter than 1 h.

The relations between the conditions during the thermochromatography and the ¹¹¹In-fractions adsorbed at the regions 1, 2 and 3 (Fig. 2) (Table 2) permit the identification of the indium compounds as the tri-, mono- and oxychlorides respectively.

Table 1. The release of ¹¹¹In from 0.3 g irradiated silver samples at: T = 1315 K, experimental time: 1 h, ratio of gas composition: p HCl/H₂O = 1/10.

Total pressure of the gas mixtures [Pa]	0.40	1.33	4.00	6.67	13.3
Fractional release [%]	99.85 ± 0.08	99.91 ± 0.09	99.98 ± 0.02	99.91 ± 0.08	99.89 ± 0.11

solution.

Fig. 2. Thermochromatogram of the indium chlorides, evaporated into the gas phase from the irradiated silver experimental time: 1 h, $pHCl/pH_2O = 0.1$, total pressure: 6.67 Pa.

The results of our investigations were used to develop a simple technology for the high temperature separation of ¹¹¹In from silver (Fig. 3).

Figure 3 shows a diagram of the remote control led process. Chips of silver cut from the target surface (thickness: $100-150 \ \mu$ m) are inserted in a quartz test tube (2) which is sealed and evacuated to 10^{-2} Pa. The HCl steam mixture is supplied via a needle valve adjusting to a total pressure of about 1.3 Pa in the device (4). The generator for the chlorinating gas mixture is a solution of 7.2 M HCl. The furnace (1) with a power of 500 W is switched on and the silver is brought to a temperature of (1310 ± 20) K for 0.5 h, the furnace is then switched off and the gas mixture supply valve is closed. After cooling the apparatus to 320 K the test tube is filled with a solution of 0.05 M HCl via a system of

Table 2. Thermochromatographic distribution at different conditions (T = 1315 K). $T_{\text{fraction} = 1} = 385$ K.

Total		-	% of ¹¹¹ In fraction		
pressure [Pa]	$p \operatorname{HCl}/p \operatorname{H}_2 \operatorname{O}$	Time [h]	3	2	1
0.67	10/1	0.5	0.97	65.8	32.8
0.67	10/1	1.0	0.80	53.3	45.3
6.67	10/1	0.5	0.68	31.3	66.9
6.67	10/1	1.0	0.35	27.5	71.6
6.67*	1/10	1.0	1.85	52.9	45.1
6.67	1/10	2.0	0.10	8.7	90.6

valves and tubes. This solution can be drawn through a quartz filter (3) into the ¹¹¹In container (5) 3–5 min later. The ¹¹¹In solution may be concentrated by ion-exchange chromatography and the final solution, in 0.05 M HCl, sterilized by filtration through a millipore filter. The obtained ¹¹¹In preparations thus contains less than 1 nM Ag in 20 mL

References

- 1. Neirinckx R. D. Radiochem. Radioanal. Lett. 4, 152 (1970).
- Gruverman I. J. and Kruger P. Int. J. Appl. Radiat. Isot. 5, 21 (1959).
- Thakur M. L. and Nunn A. D. Int. J. Appl. Radiat. Isot. 23, 139 (1972).
- Levin V. I., Kozlova M. D., Malinin A. B., Sevastianova A. S. and Potapova Z. M. Int. J. Appl. Radiat. Isot. 25, 286 (1974).
- 5. Brown L. C. and Beets A. L. Int. J. Appl. Radiat. Isot. 23, 57 (1972).
- Westgaard L., Rudstam G. and Jonsson O. C. Inorg. Nucl. Chem. 31, 3747 (1969).

Fig. 3. Remotely controlled version of the method for the high temperature extraction of ¹¹¹In from silver. 1-electric furnace, 2-silver sample, 3-quartz filter, 4-quartz device for ¹¹¹In-release, 5-¹¹¹In-container.

- 7. Rudstam G. and Grapengiesser B. Radiochim. Acta 20, 97 (1973).
- Eichler B. and Domanov V. P. Preprint of the Comm. Joint Inst for Nuclear Research. Dubna-Preprint P12-7775 (1974).
- 9. Tschun K. S., Eichler B. and Zvara I. Preprint of the Comm. Joint Inst for Nuclear Research. Dubna-Preprint P12-84-633 (1984).
- P12-84-633 (1984).
 10. Shevelev G. A., Troitzkaya A. G. and Kartaschov V. M. Appl. Nucl. Spectrosc. A. 6, 295 (1976).